
Efficient Grapheme-phoneme Alignment for Japanese

Lars Yencken and Timothy Baldwin
Dept. of Computer Science and Software Engineering

University of Melbourne
Victoria 3010 Australia

NICTA Victoria Research Lab
University of Melbourne
Victoria 3010 Australia

{lars,tim}@csse.unimelb.edu.au

Abstract
Current approaches to the grapheme-phoneme
alignment problem for Japanese achieve good
accuracy, but are extremely computationally
expensive. In this paper we evaluate various
modifications to previous algorithms for both
the alignment and okurigana detection subtasks.
The best algorithm achieved accuracy of 96.2%
for the combined task on a limited data set, and
was significantly more efficient than previous ap-
proaches.

1 Introduction
Alignment is the task of, for two streams of
data which represent alternate construals of the
same basic information content, identifying cor-
responding segments within the two streams. A
common alignment task in computational lin-
guistics is word alignment, whereby given an
English sentence and its French translation, say,
each English word n-gram is aligned with its
French translation (Brown et al., 1993; Man-
ning and Schütze, 2000). The combined set of
such alignments derived from a parallel corpus is
generally used to train the translation model in
statistical machine translation systems. Other
alignment tasks in computational linguistics in-
clude sentence alignment, structural alignment
(e.g. as a means of grammar inference), and
grapheme-phoneme alignment.

The grapheme-phoneme (“GP”) alignment
task aims to maximally segment the ortho-
graphic form of an utterance into morpho-
phonemic units, and align these units to a pho-
netic transcription of the utterance. Maxi-
mal indicates the desire to segment grapheme
strings into the smallest meaningful units possi-
ble. Taking the English example word battle-
ship and its phonetic transcription /bætlSIp/,
one possible alignment is:

b a tt le sh i p
b æ t l S I p

Note that alignment in general is many-to-
many. In the example above, tt aligns to /t/,
le aligns to /l/ and sh aligns to /S/. Equally it
might be possible for some letters to align to an
empty string. This task is challenging for any
language without a one-to-one correspondence
between individual graphemes and phonemes,
as is the case with English (Zhang et al., 1999),
Japanese (considering graphemes as kanji char-
acters), and indeed most languages with a pre-
existing writing system.

GP alignment is a prerequisite for many ap-
plications. For example, the alignment pro-
cess, and the resulting aligned GP tuples, are
a precursor to achieving automated grapheme-
to-phoneme mappings for several text-to-speech
systems (Allen et al., 1987; Sejnowski and
Rosenberg, 1987; Sloat, 1996; Black et al.,
1998). Further uses include accented lexicon
compression (Pagel et al., 1998), identification
of cognates (Kondrak, 2003), Japanese-English
back-transliteration (Knight and Graehl, 1998;
Bilac and Tanaka, 2005a, 2005b) and finally the
FOKS dictionary system for Japanese learners
(Bilac, 2002; Bilac et al., 2002), which provides
the context for our work.

There are several successful approaches to
Japanese GP alignment, notably the itera-
tive rule-based approach taken by Bilac et al.
(1999), later followed by an unsupervised statis-
tical model based on TF-IDF by Baldwin and
Tanaka (1999a, 1999b). Although these models
were found to have high accuracy, their itera-
tive approach had a high computational cost,
making them impractical for many real-world
applications. For the statistical models, this
is partially a consequence of their strongly un-
supervised nature. We thus explore the use
of the Edict and Kanjidic electronic dictionar-
ies (Breen, 1995) as means of constraining the
alignment search space and reducing computa-
tional complexity.

The goal of this paper is to compare sev-



eral different GP alignment methods in order
to achieve equivalent or better alignment accu-
racy to that for existing methods, at a much
lower computational cost. To achieve this goal,
we split the task of GP alignment into a pure
alignment subtask and an okurigana detection
subtask, and compare algorithm variants of pre-
existing approaches for both. As our base
model, we use the top performing statistical
model from Baldwin and Tanaka (2000).

The remainder of this paper is structured as
follows. First, we discuss the FOKS system, an
important motivator for this work (Section 2).
We then discuss the GP-alignment problem for
Japanese in greater depth (Section 3), before
giving details of the baseline statistical model
and our modifications to it (Section 4). Finally,
we discuss our results on a manually aligned test
data set (Section 5).

2 FOKS dictionary system
GP alignment is an important step in the
pipeline that drives the FOKS (“Forgiving On-
line Kanji Search”) dictionary interface (Bilac,
2002), our particular research interest. Whereas
normal electronic dictionaries will not provide
the target word if an incorrect reading is looked
up, FOKS is able to compensate for learner
mistakes by dynamically predicting readings for
compounds, and aims to direct the user to the
correct word despite possible mistakes in the en-
tered reading.

For example, suppose the user wishes to look
up ¨ª [ka-ze] “common cold”. He or she may
know the kanji ¨ [ka-ze/fu-u] “wind”, and also
ª [yo-ko-shi-ma/jya] “evil, wicked”, and thus
guess that the reading for ¨ª is ka-ze-yo-
ko-shi-ma, one possible combination of read-
ings. However, the correct reading ka-ze is
non-compositional. Despite the incorrect guess,
FOKS still lists the target word with the correct
reading in its list of candidates for the guessed
reading.

The back-end data that drives FOKS is con-
structed as follows. Firstly, all entries in the
Edict dictionary are GP aligned. The subse-
quent GP tuples are counted to estimate the
probability P (r|k) of a given reading r for a
given grapheme segment k. Composing seg-
ment probabilities together gives the probabil-
ity P (r|s) of an entire dictionary entry s taking
reading r. Using Bayes rule, we finally calculate
P (s|r), the probability of a dictionary entry s
being the target entry given the user provided

Figure 1: A typical dictionary entry requiring
GP alignment, with two potential alignments
shown

reading r. The entries s with non-zero proba-
bilities form our list of candidates for the user’s
query, and the probabilities P (s|r) provide the
basis of the ranking (Bilac et al., 2002). GP
alignment allows us to calculate each P (r|k) and
is thus a pivotal supporting technology which
underlies the FOKS system.

3 Grapheme-phoneme alignment in
Japanese

In the context of Japanese, the GP-alignment
task has a few peculiarities. Japanese has three
scripts: kanji, hiragana, and katakana. Since
hiragana and katakana (or kana collectively)
are essentially phonetic, we can represent the
phoneme string using either of these scripts di-
rectly. Kanji on the other hand are ideographic
rather than phonetic. Each kanji may have
many readings as a single unit, and may also
form part of larger units which themselves take
on one or more readings. To emphasize the dif-
ference between scripts, we shall use romaniza-
tions for the phonetic scripts. Figure 1 gives an
example for ��Y� [ka-n-sya-su-ru] “to give
thanks, be thankful”.

Given that kana are phonetic, the main task
is then reduced to determining how the kanji el-
ements should be segmented, and what elements
of the phoneme string they correspond to. Be-
low, we outline four features of Japanese that
impede this task.

3.1 Okurigana alternation
Individual kanji segments do not always corre-
spond to minimal units in language. Often a hi-
ragana suffix of some description (usually con-
jugational) is required, which we term okurig-
ana. Verb and adjective conjugation fall under
this category: for example L-ku [i-ku] “go” in
plain form changes to L-ke [i-ke] in the imper-
ative. Any useful segmentation should thus in-
clude such suffixes along with their kanji stem



in order to preserve the basic morpho-phonemic
structure of the compound.

Although most cases of okurigana represent
verb and adjective conjugation, there are many
general cases such as that of the kanji Ö, which
occurs in compounds almost exclusively as Ö-ri
[to-ri], but also has an alternate where the suf-
fix ri is conflated with the kanji stem (such as in
Ö� [to-ri-bu-n] “one’s share or portion”). With
some lexemes, both alternants are possible, such
as in Ö-ri-� [to-ri-bu-n]. It is desirable for sys-
tems to be able to capture such alternations,
in order to achieve consistent segmentation be-
haviour and attain an accurate estimate of the
frequency with which a given kanji occurs with
a particular reading (independent of the exact
lexical form of the word).

3.2 Sequential voicing

Sequential voicing occurs when a tailing segment
has its initial consonant voiced. For example:
, [ho-n] “book” + Ú [ta-na] “shelf” → ,Ú
[ho-n-da-na] “bookshelf”. Although sequential
voicing is notoriously unpredictable, its poten-
tial occurrence is constrained by Lyman’s law,
which states that sequential voicing will not oc-
cur where there are existing voiced obstruents
in the tailing segment (Vance, 1987). It occurs
in about 75% of cases where Lyman’s law is not
violated, with some systematic irregularities for
noun-noun compounds as found in recent work
by Rosen (2003).

Alignment methods based on precedence or
frequency counts may be hindered by sequential
voicing, since aligned grapheme/phoneme pairs
may not be recognised as phonological variants
of previously seen kanji–reading pairs. Fortu-
nately, devoicing is relatively simple, so a com-
mon approach is to simply consider voiced and
devoiced grapheme/phoneme pairs to be equiv-
alent for counting or comparison.

3.3 Sound euphony

Sound euphony occurs when the last syllable
of a leading segment is modified to match the
sound of the tailing segment. This is marked
uniquely by the c kana character in Japanese.
For example: ý [ko-ku] “country” + � [kyo-o]
“boundary” → ý� [ko-k-kyo-o] “national bor-
der”. Unlike sequential voicing, which imposes a
reversible transformation, it is not clear from ý
� [ko-k-kyo-o] “national border” what the origi-
nal kana ending for ý was (possibilities include
ko-ki, ko-ku, ko-su and ko-tsu).

3.4 Grapheme gapping
Occasionally a kana is omitted from the writ-
ten form of a word, but does not constitute a
component of the readings of the neighbouring
kanji. Typically the kana can also be explicitly
included in the written form of the word. For
example: q [ya-ma] “mountain” + no [GENI-
TIVE] + K [te] “hand” can be written as either
qK or q-no-K, both with reading [ya-ma-no-
te].

Grapheme gapping is very rare, normally only
occurs with the particles ga or no, and tends
not to be productive, suggesting that even ap-
proaches aimed at open text are better off sim-
ply storing each case individually. The only pro-
ductive case involving a kanji is � [ma]. For
example: � [ma] “true/pure” + �Ç [ku-ra-
ya-mi] “darkness” → ��Ç [ma-ku-ra-ya-mi]
“pitch dark”, or �c�Ç [ma-k-ku-ra-ya-mi] for
emphasis.

4 Multi-step alignment
In this section, we first describe the baseline al-
gorithm of Baldwin and Tanaka (1999a, 1999b),
before introducing the modifications we propose
in this research.

4.1 Overview
A high-level depiction of the unsupervised align-
ment method of Baldwin and Tanaka (1999a,
1999b) is given in Figure 2. Firstly, all poten-
tial segmentations and alignments for input en-
tries are created. Each entry will have potential
segmentations and alignments per segmentation
which number exponentially in the entry’s or-
thographic length.

Some simple linguistic constraints used as
forward constraints to reduce this number are
strictly linear alignment, a minimum of one
phoneme aligned to each grapheme, and a re-
striction that each alignment must successfully
match any kana entry in the grapheme string
with its equivalent phoneme entry. Further con-
straints used to prune entries include match-
ing okurigana to pre-clustered variants and forc-
ing script-boundaries (except kanji to hiragana
boundaries) to correspond to segment bound-
aries.

Based on the linguistic constraints, we can
reasonably expect to have uniquely determined
some number of alignments for any sufficiently
diverse data set.1 The uniquely determined

1Notable exceptions to this are dictionaries of 4-kanji
proverbs, such as the 4JWORDS electronic dictionary,



Figure 2: The TF-IDF based alignment algo-
rithm

alignments and the remaining ambiguous align-
ments are both used separately to seed fre-
quency counts for the TF-IDF model.

TF-IDF is a family of models originally de-
veloped for IR tasks, combining the TF (term
frequency) and IDF (inverse document fre-
quency) heuristics (Baeza-Yates and Ribiero-
Neto, 1999). In the GP alignment task, they me-
diate the tension between oversegmenting and
undersegmenting. The TF value is largest for
the most frequently occurring GP pair given
any grapheme; an oversegmented alignment pro-
duces rarer segments with lower frequency, pe-
nalizing the TF score. The IDF value on the
other hand is largest for segments which occur
in a wide variety of contexts, and penalises un-
dersegmenting.

4.2 TF-IDF Alignment
We use a modified version of the TF-IDF model
which takes into account the differing level of
confidence we have in our frequency counts
between solved (freqs) and ambiguous (frequ)
alignments (Baldwin and Tanaka, 2000). For

whose entries’ grapheme forms lack kana to help elimi-
nate possible alignments.

each alignment, we count the occurrence of
each grapheme segment 〈g〉, of each aligned
grapheme/phoneme segment pair 〈g, p〉, and of
the same pair with one additional pair of con-
text on either side 〈g, p, ctxt〉. For any fre-
quency lookup, the ws and wu constants provide
a weighting between information from solved
and ambiguous alignments:

wtf (x) = ws × freqs(x) + wu × frequ(x) (1)

To score a potential alignment, we calculate the
tf and idf scores for each grapheme/phoneme
segment pair and multiply them together as in
Equations 2-4. The score for the whole align-
ment is the average of the scores for every pair
which contains a kanji character, since these are
the non-trivial pairs. The constant α is intended
as a smoothing factor for the TF and IDF scores.
It must be assigned such that 0 < α < wu ≤ ws.

tf (g, p) =
wtf (〈g, p〉)− wu + α

wtf (〈g〉)
(2)

idf (g, p, ctxt) = log
wtf (〈g, p〉)

wtf (〈g, p, ctxt〉)− wu + α
(3)

score(g, p, ctxt) = tf (g, p)× idf (g, p, ctxt) (4)

Once all potential alignments have been
scored, the highest-scoring alignment is chosen
to disambiguate its entry. Its counts are re-
moved from the unsolved pool and added to the
solved pool, and algorithm reiterates with up-
dated counts. In this way entries are iteratively
disambiguated until no more remain, and the
algorithm is complete.

Although effective, the iterative algorithm
is extremely expensive, with two main costs.
Firstly, as with any alignment task where two
strings of length l and m respectively need to
be aligned, there are 2lm possible alignments be-
fore applying constraints (Brown et al., 1993).
In our task, kanji essentially form free variables
in the alignment, whereas kana align to them-
selves, constraining the search space. Entries
with many kanji and no kana to constrain them
thus have prohibitively large numbers of possi-
ble alignments. These cases bloat the number of
potential alignments to be rescored on each it-
eration so much that including them makes our
main algorithm infeasibly expensive.



The second bottleneck is in the average case.
Suppose there are n alignments pairs, each with
p possible alignments. Then the cost of the iter-
ative rescoring loop is O((np)2). Even having re-
moved the problem cases above, if p is still high
on average, the problem will prove intractable
for suitably large n. As a comparison, the evalu-
ation set we use has 5000 elements, yet the Edict
dictionary has over 110,000 entries, representing
a near 500 fold expected increase in computation
time. Although this could be mitigated by sim-
ply breaking the input down into smaller subsets
for processing, it is desirable to process all the
data in the same iterative loop, since this gives
greatest consistency of alignment.

Strategies to reduce the average case for p and
to eliminate the worst case for p thus form the
basis for our attempts at modifying the algo-
rithm.

4.3 Modified algorithm
The modified algorithm diverges from the un-
supervised algorithm in three main respects.
Firstly, we separate out okurigana handling into
a separate step after alignment, benefiting both
efficiency and error measurement. Secondly, a
reading model is introduced based on the Kan-
jidic electronic dictionary2 and is used to dis-
ambiguate the majority of remaining cases be-
fore the TF-IDF model is reached. Thirdly,
we provide a maximum alignment size cutoff
above which we use a simplified non-iterative
alignment algorithm which meets resource con-
straints for problem cases. We discuss these
changes below.
4.3.1 Separating okurigana handling
The okurigana handling in the original algo-
rithm involves pre-clustering okurigana alter-
nates, and attempting to restrict alignments
to match these alternates wherever possible.
Whilst this constraint does help reduce poten-
tial alignments, it also limits the application
of the stronger constraint that script bound-
aries in the grapheme string must correspond
to segment boundaries (i.e. every occurrence
of a kanji–hiragana script boundary must be
considered as a potential okurigana site). If
okurigana detection is left as a post-processing
task, we can strengthen this constraint to in-
clude all script boundaries, instead of omitting
kanji-to-hiragana boundaries. This in turn pro-
vides a larger gain than the original okurigana

2http://www.csse.monash.edu.au/~jwb/kanjidic.
html

constraint, since more entries are fully disam-
biguated.

The GP-alignment task is then split into two
parts: a pure alignment task, which can be car-
ried out as per the original algorithm, and a sep-
arate okurigana detection task. This redesign
also allows us to separately evaluate the error in-
troduced during alignment, and that introduced
during okurigana detection, and thus allows us
to experiment more freely with possible models.

4.3.2 Short and long entries
Ultimately, any method which considers all pos-
sible alignments for a long entry will not scale
well, since potential alignments increase expo-
nentially with input length. We can however
extend the applicability of the algorithms con-
sidered by simply disambiguating long entries in
a non-iterative manner.

The number of potential alignments for an en-
try can be estimated directly from the number
of consecutive kanji. Our approach is to sim-
ply to count the number of consecutive kanji in
the grapheme string. If this number is above
a given threshold, we delay alignment until all
the short entries have been aligned. We then use
the richer statistical model to align all the long
entries in a single pass, without holding their
potential alignments in memory.

Although long entries were not an issue in our
evaluation set, a threshold set experimentally to
5 consecutive kanji worked well using the Edict
dictionary as input, where such entries can prove
difficult.

4.3.3 Reading model
For the pure alignment task, we added an addi-
tional reading model which disambiguates en-
tries by eliminating alignments whose single
kanji readings do not correspond to those in
the Kanjidic and KANJD212 electronic dictio-
naries. These dictionaries list common read-
ings for all kanji in the JIS X 0208-1990 and
JIS X 0212-1990 standards respectively, cover-
ing 12154 kanji in total. Effectively, we are ap-
plying the closed world assumption and allow-
ing only those alignment candidates for which
each grapheme unit is associated with a known
reading. Only in the instance of over-constraint,
i.e. every GP alignment containing at least one
unattested reading for a grapheme unit, do we
relax this constraint over the overall alignment
candidate space for the given grapheme string.

A simple example of disambiguation using the
reading model is that of �! [i-chi-ryo-u] “one



Potential alignmentsKanjidic readings一：i-chi, i-tsu, hi-to 両：ryo-u, te-ru, fu-ta-tsu一｜両i｜chi-ryo-u 一｜両i-chi｜ryo-u 一｜両i-chi-ryo｜u 一両i-chi-ryo-u
Figure 3: Disambiguation using the reading
model

vehicle” as shown in Figure 3. Since only one
of the potential alignments is compatible with
the known readings, we then select it as the cor-
rect alignment. As an indication of the effective-
ness of the reading model, our initial constraints
uniquely determine 31.1% of the entries in the
Edict dictionary.3 The reading model disam-
biguates a further 60.6% of entries, effectively
decreasing the input to the iterative alignment
algorithm by an order of magnitude, to the re-
maining 8.3%.

4.3.4 Heuristic variants
We could continue to use the original TF-IDF
model over the residue which is not disam-
biguated by the reading model, although the
type of input has changed considerably after
passing through the reading model. Since the
reading model is likely to fully disambiguate any
entry containing only single kanji segments, the
only remaining ambiguous models are likely to
be those with solutions containing multi-kanji
segments (which do not occur in either Kanjidic
or KANJD212); an instance of a multi-kanji seg-
ment is our earlier example ¨ª [ka-ze] “com-
mon cold”. With this in mind, we compare the
original TF-IDF model (our baseline) with sim-
ilar models using TF only, IDF only, or ran-
dom selection to choose which entry/alignment
to disambiguate next.

4.3.5 Okurigana detection
We similarly wish to determine what form of
okurigana detection and realignment model is
most appropriate. Since the majority of entries

3http://www.csse.monash.edu.au/~jwb/edict.
html

in the Edict dictionary (our main experimen-
tal data set) which contain potential okurigana
sites (i.e. kanji followed by hiragana) do contain
okurigana in some form, we use as our baseline
the simple assumption that every such site is an
instance of okurigana. In this manner, the base-
line simply removes every kanji-to-kana segment
boundary. As a small enhancement, the bound-
ary is not removed if the tailing kana segment is
one of the hiragana particles no, ga or ni, which
frequently occur alone.

We consider three alternative okurigana mod-
els to compare to our baseline, of increasing
complexity and expected coverage. Firstly, the
Kanjidic dictionary contains common okurigana
suffixes for some kanji with conjugating entries.
Thus our first model uses these suffixes verbatim
for okurigana detection. The coverage of okuri-
gana suffixes in Kanjidic is somewhat patchy,
so in our second model, in addition to Kanjidic
suffixes, we also perform a frequency count over
all potential okurigana sites in the Edict dictio-
nary, and include any occurrences above a set
threshold as okurigana.

Finally, most instances of okurigana are due
to verb conjugation. As well as taking straight
suffixes from the previous models, this final
model harvests verbs from Edict. Most verb en-
tries in Edict have a tag marking them as ichi-
dan, godan or suru verbs.4 The verb type and
stem allow us to conjugate regular verbs vari-
ously, giving us a large number of new okurig-
ana suffixes not present in the previous models.
In order to improve accuracy, all three methods
fall back to the baseline method if they do not
detect any okurigana.

5 Evaluation
Having teased apart the alignment and okurig-
ana detection algorithms, we are in a position to
separately evaluate their performance. Our test
set for the combined task consists of 5000 ran-
domly chosen and manually aligned examples
from Edict, from which we then separated out
an individual evaluation set for each subtask.

Since we are also interested in efficiency, we
provide execution time as measured by elapsed
time on a standard Pentium 4 desktop PC. Our
emphasis however is on the relative time taken
by different algorithms rather than the exact

4The tagset for Edict verbs is larger than this, but the
additional tags largely mark subclasses and exceptions of
the three main classes, which we ignore for the sake of
simplicity.



time as measured.
In the following section we first evaluate align-

ment and okurigana detection separately, then
we evaluate okurigana detection, and finally we
assess performance over the combined task.

5.1 Alignment

We first compare the accuracy of the various
alignment algorithm variants, as given in Ta-
ble 1. After some experimentation, parameter
values of 0.05 for α, and 2.5 for ws and wu were
found to yield the best results, and were hence
used to generate the results we discuss here.

For each of the non-random heuristics, we ex-
pect that the iterative version will achieve higher
accuracy than the non-iterative version, since
the statistical model is rebuilt each iteration
adding the best example from the last. As such,
this represents a time/accuracy trade-off, a fact
confirmed by our data (see Table 2). The gain
| 2% in the case of TF-IDF, 4% for IDF alone
| comes at the cost of an order of magnitude
larger execution time, which also increases ex-
ponentially with the number of input entries.

In contrast, the Kanjidic model consistently
achieves a very high accuracy regardless of the
heuristic chosen. A large number of entries
are immediately disambiguated by the Kanjidic
model, thus initially improving accuracy and
then facilitating use of more accurate statis-
tics in the iterative algorithm without significant
penalty to efficiency. We also expect the Kan-
jidic model’s execution time to scale more mod-
erately with the number of input entries than
the original iterative algorithm, since a far lesser
proportion of the entries require iterative disam-
biguation.

Comparing the individual heuristics at this
stage, a surprise is that the IDF heuristic attains
equivalent results to the TF-IDF heuristic, sug-
gesting that broad occurrence of 〈g, p〉 pairs is
a good indicator of their alignment probability.
The TF heuristic in comparison performs worse
than simply choosing randomly, suggesting that
the proportion of times a grapheme occurs as
the current 〈g, p〉 pair is a very poor indication
of its alignment probability.

5.2 Okurigana detection

We now compare the performance of our okurig-
ana detection algorithms. All the algorithms we
compare are linear in the size of the input and
thus run in much less time than the alignment
phase, thus efficiency is not a significant criteria

Model Accuracy
Simple 98.1%
Kanjidic 98.3%
Co-occurrence 97.7%
Verb conjugation 97.7%

Table 3: Okurigana detection accuracy across
models

in choosing between them. The accuracy found
by each model is shown in Table 3.

Interestingly, the simple model which assumes
that every potential case of okurigana is okuri-
gana performs extremely well, beaten only by
the addition of the Kanjidic common okurigana
stems. Adding more information to the model
about valid okurigana occurrences even reduces
the accuracy slightly over our test data.

Rather than indicating blanket properties of
these models, the results suggest properties of
our testing data. Since it consists entirely of
dictionary entries without the common hiragana
particles which would occur in open text, this
greedy approach is very suitable, and suffers few
of the shortcomings which it would normally
face.

In open text, we would consistently expect ad-
ditional language features between lexical items
which would break the assumptions made by our
simple model, and thus reduce its accuracy dra-
matically. In contrast, the full verb conjugation
model would then be expected to perform best,
since it has the most information to accurately
detect cases of okurigana even in the presence
of other features.

5.3 Combined task
Selecting the two models which performed best
on our test data, we can now evaluate the pair
on the combined task. For the alignment sub-
task, the IDF heuristic with Kanjidic was used.
For the okurigana detection subtask, the sim-
ple algorithm is used. The results are shown in
Table 4.

A final accuracy of 96.2% was achieved, with
the errors caused mostly in the alignment sub-
task. As predicted, grapheme gapping was a
source of errors only in a small percentage of
cases, justifying its exclusion from our model.
This level of accuracy if equivalent to that of
earlier models, yet it has been achieved with a
much lower computational cost. Examples of
incorrect alignment are given in Figure 4 below.

Example (a) shows a grapheme gapping error,



accuracy (%) Random TF IDF TF-IDF
Iterative 47.8 23.7 94.7 93.4
Single-pass 47.3 23.6 90.5 90.8
Kanjidic 94.4 92.9 98.0 97.9

Table 1: Alignment accuracy across models

time (m:s) Random TF IDF TF-IDF
Iterative 0:10 24:10 22:47 21:54
Single-pass 0:10 0:11 0:09 0:10
Kanjidic 0:12 0:27 0:24 0:24

Table 2: Alignment execution time across models

Status Count Percentage
Correct 4809 96.2%
Incorrect 191 3.8%
→ Gapping 6 0.1%
→ Alignment 163 3.3%
→ Okurigana 22 0.4%

Table 4: Best model accuracy for the combined
task

a. Output �\Û ma-s\sa-ka-ri
Correct �\Û ma-(s)\sa-ka-ri

“full bloom”
b. Output >\�\chi ha-sa\mi-u\chi

Correct >\�\chi ha-sa-mi\u\chi
“pincer attack”

c. Output d-n\J a-ka-n\bo-u
Correct d\n\J a-ka\n\bo-u

“baby”

Figure 4: Examples of incorrect alignment in
the combined task

where the output, although correctly segmented
and aligned, attributes the additional s sound to
the � kanji instead of detecting it as a gapped
grapheme. In example (b) we see a typical align-
ment error, where one kanji has been attributed
part of the reading of another. Finally, example
(c) gives an error in okurigana detection, where
the n kana is erroneously detected as an okuri-
gana suffix of the d kanji.

6 Extensions
Although current work is suitable for use with
the FOKS system, it is still untested on open
text. The lack of suitable aligned data is the
main obstacle to creating a system with wider

applicability. Of the two subtasks, alignment
should remain relatively unchanged in the move
to open text, and we expect the IDF algorithm
with Kanjidic to continue to perform well.

Okurigana detection remains the harder prob-
lem, for tasks which require it. The verb-
conjugation model, despite its relatively poor
performance for dictionary entries, suggests it-
self as the most fruitful approach to accurate
detection for open text, and could easily be ex-
tended. In particular, the addition of conju-
gation suffixes of high-frequency irregular verbs
would be a straightforward way to boost accu-
racy.

7 Conclusion

We have decomposed the GP alignment task
into an alignment subtask and an okurigana de-
tection subtask, and explored various algorithm
variants for use in both. In particular, the itera-
tive IDF heuristic with a Kanjidic reading model
provided the best accuracy in significantly less
time than the original algorithm. For the okuri-
gana detection subtask, a simple model outper-
formed more complicated models of conjugation
due to peculiarities of dictionary entries as input
to alignment.

References
Jonathan Allen, Sheri Hunnicut, and Dennis Klatt.

1987. From Text To Speech, The MITTALK Sys-
tem. Cambridge University Press, Cambridge,
UK.

Ricardo Baeza-Yates and Berthier Ribiero-Neto.
1999. Modern Information Retrieval. Addison
Wesley / ACM press.

Timothy Baldwin and Hozumi Tanaka. 1999a. The
applications of unsupervised learning to Japanese
grapheme-phoneme alignment. In Proc. ACL



Workshop on Unsupervised Learning in Natural
Language, College Park, USA.

Timothy Baldwin and Hozumi Tanaka. 1999b. Au-
tomated Japanese grapheme-phoneme alignment.
In Proc. International Conference on Cognitive
Science, pages 349–354, Tokyo, Japan.

Timothy Baldwin and Hozumi Tanaka. 2000. A
comparative study of unsupervised grapheme-
phoneme alignment methods. In Proc. 22nd An-
nual Meeting of the Cognitive ScienceSociety,
pages 597–602, Philadelphia, USA.

Slaven Bilac and Hozumi Tanaka. 2005a. Direct
combination of spelling and pronunciation infor-
mation for robust back-transliteration. In Alexan-
der Gelbukh, editor, Computational Linguistics
and Intelligent Text Processing, pages 413–424.
January.

Slaven Bilac and Hozumi Tanaka. 2005b. Improv-
ing back-transliteration by combining information
sources. In Keh-Yih Su, Jun’ichi Tsujii, Jong-
Hyeok Lee, and Oi Yee Kwong, editors, Proc. 1st
International Joint Conference on Natural Lan-
guage Processing, pages 216–223, January.

Slaven Bilac, Timothy Baldwin, and Hozumi
Tanaka. 1999. Incremental Japanese grapheme-
phoneme alignment. In Information Processing
Society of Japan SIG Notes, volume 99-NL-209,
pages 47–54.

Slaven Bilac, Timothy Baldwin, and Hozumi
Tanaka. 2002. Bringing the dictionary to the
user: the FOKS system. In Proc. 19th Interna-
tional Conference on Computational Linguistics,
pages 85–91, Taipei, Taiwan.

Slaven Bilac. 2002. Intelligent dictionary interface
for learners of Japanese. Master’s thesis, Tokyo
Institute of Technology.

Alan W. Black, Kevin A. Lenzo, and Vincent Pagel.
1998. Issues in building general letter to sound
rules. In Proc. 3rd ESCA Workshop on Speech
Synthesis, pages 77–80, Jenolan Caves, Australia.

Jim Breen. 1995. Building an electronic
Japanese-English dictionary. Japanese Stud-
ies Association of Australia Conference
(http://www.csse.monash.edu.au/~jwb/
jsaa_paper/hpaper.html).

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation:
Parameter estimation. Computational Linguis-
tics, 19(2):263–311.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Grzegorz Kondrak. 2003. Identifying complex sound
correspondences in bilingual wordlists. In Alexan-
der Gelbukh, editor, Proc. 4th International Con-
ference on Computational Linguistics and Intel-
ligent Text Processing, pages 432–443, Berlin.
Springer-Verlag.

Christopher D. Manning and Hinrich Schütze. 2000.

Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, Massachusetts.

V. Pagel, K. Lenzo, and A.W. Black. 1998. Letter
to sound rules for accented lexicon compression.
In Proc. 5th International Conference on Spoken
Language Processsing, pages 252–255.

Eric Rosen. 2003. Systematic irregularity in
Japanese rendaku: How the grammarmediates
patterned lexical exceptions. Canadian Journal
of Linguistics, (48):1–37.

T. Sejnowski and C. Rosenberg. 1987. Parallel net-
works that learn to pronounce English text. Com-
plex Systems, 1:145–168.

Richard Sloat. 1996. Multilingual text analysis for
text-to-speech synthesis. Natural Language Engi-
neering, 4(2).

Timothy J. Vance. 1987. An Introduction to
Japanese Phonology. SUNY Press, New York.

Jianna Jian Zhang, Howard J. Hamilton, and Nick J.
Cercone. 1999. Learning english grapheme seg-
mentation using the iterated version space algo-
rithm. In Andrzej Skowron and Zbigniew W. Raś,
editors, Proc. 11th International Symposium on
Methodologies for Intelligent Systems, Warsaw,
Poland. Springer-Verlag.


